Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38525871

RESUMO

Indoor sources of air pollution, such as from cooking and cleaning, play a key role in indoor gas-phase chemistry. The focus of the impact of these activities on air quality tends to be indoors, with less attention given to the impact on air quality outside buildings. This study uses the INdoor CHEmical Model in Python (INCHEM-Py) and the Advanced Dispersion Modelling System (ADMS) to quantify the impact cooking and cleaning have on indoor and outdoor air quality for an idealised street of houses. INCHEM-Py has been developed to determine the concentrations of 106 indoor volatile organic compounds at the point they leave a building (defined as near-field concentrations). For a simulated 140 m long street with 10 equi-distant houses undertaking cooking and cleaning activities, the maximum downwind concentration of acetaldehyde increases from a background value of 0.1 ppb to 0.9 ppb post-cooking, whilst the maximum downwind chloroform concentrations increase from 1.2 to 6.2 ppt after cleaning. Although emissions to outdoors are higher when cooking and cleaning happen indoors, the contribution of these activities to total UK emissions of volatile organic compounds is low (less than 1%), and comprise about a quarter of those emitted from traffic across the UK. It is important to quantify these emissions, particularly as continued vehicle technology improvements lead to lower direct emissions outdoors, making indoor emissions relatively more important. Understanding how indoor pollution can affect outdoor environments, will allow better mitigation measures to be designed in the future that can take into account all sources of pollution that contribute to human exposure.

2.
Environ Sci Process Impacts ; 26(2): 436-450, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38258874

RESUMO

Cleaning products emit a range of volatile organic compounds (VOCs), including some which are hazardous or can undergo chemical transformations to generate harmful secondary pollutants. In recent years, "green" cleaners have become increasingly popular, with an implicit assumption that these are better for our health and/or the environment. However, there is no strong evidence to suggest that they are better for indoor air quality compared to regular products. In this study, the VOC composition of 10 regular and 13 green cleaners was examined by headspace analysis. Monoterpenes were the most prevalent VOCs, with average total monoterpene concentrations of 8.6 and 25.0 mg L-1 for regular and green cleaners, respectively. Speciated monoterpene emissions were applied to a detailed chemical model to investigate the indoor air chemistry following a typical cleaning event. Green cleaners generally emitted more monoterpenes than regular cleaners, resulting in larger increases in harmful secondary pollutant concentrations following use, such as formaldehyde (up to 7%) and PAN species (up to 6%). However, emissions of the most reactive monoterpenes (α-terpinene, terpinolene and α-phellandrene), were observed more frequently from regular cleaners, resulting in a disproportionately large impact on the concentrations of radical species and secondary pollutants that were formed after cleaning occurred.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Formaldeído/análise , Compostos Orgânicos Voláteis/análise , Monoterpenos
3.
Environ Res ; 243: 117804, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38042519

RESUMO

Limiting the negative impact of climate change on nature and humans is one of the most pressing issues of the 21st century. Meanwhile, people in modern society spend most of the day indoors. It is therefore surprising that comparatively little attention has been paid to indoor human exposure in relation to climate change. Heat action plans have now been designed in many regions to protect people from thermal stress in their private homes and in public buildings. However, in order to be able to plan effectively for the future, reliable information is required about the long-term effects of climate change on indoor air quality and climate. The Indoor Air Quality Climate Change (IAQCC) model is an expediant tool for estimating the influence of climate change on indoor air quality. The model follows a holistic approach in which building physics, emissions, chemical reactions, mold growth and exposure are combined with the fundamental parameters of temperature and humidity. The features of the model have already been presented in an earlier publication, and it is now used for the expected climatic conditions in Central Europe, taking into account various shared socioeconomic pathway (SSP) scenarios up to the year 2100. For the test house examined in this study, the concentrations of pollutants in the indoor air will continue to rise. At the same time, the risk of mold growth also increases (the mold index rose from 0 to 4 in the worst case for very sensitive material). The biggest problem, however, is protection against heat and humidity. Massive structural improvements are needed here, including insulation, ventilation, and direct sun protection. Otherwise, the occupants will be exposed to increasing thermal discomfort, which can also lead to severe heat stress indoors.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluição do Ar , Humanos , Mudança Climática , Poluição do Ar em Ambientes Fechados/análise , Umidade , Ventilação
4.
BMJ Open ; 13(12): e081099, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38056942

RESUMO

INTRODUCTION: Relative to outdoor air pollution, there is little evidence examining the composition and concentrations of indoor air pollution and its associated health impacts. The INGENIOUS project aims to provide the comprehensive understanding of indoor air pollution in UK homes. METHODS AND ANALYSIS: 'Real Home Assessment' is a cross-sectional, multimethod study within INGENIOUS. This study monitors indoor air pollutants over 2 weeks using low-cost sensors placed in three rooms in 300 Born in Bradford (BiB) households. Building audits are completed by researchers, and participants are asked to complete a home survey and a health and behaviour questionnaire, in addition to recording household activities and health symptoms on at least 1 weekday and 1 weekend day. A subsample of 150 households will receive more intensive measurements of volatile organic compound and particulate matter for 3 days. Qualitative interviews conducted with 30 participants will identify key barriers and enablers of effective ventilation practices. Outdoor air pollution is measured in 14 locations across Bradford to explore relationships between indoor and outdoor air quality. Data will be analysed to explore total concentrations of indoor air pollutants, how these vary with building characteristics, and whether they are related to health symptoms. Interviews will be analysed through content and thematic analysis. ETHICS AND DISSEMINATION: Ethical approval has been obtained from the NHS Health Research Authority Yorkshire and the Humber (Bradford Leeds) Research Ethics Committee (22/YH/0288). We will disseminate findings using our websites, social media, publications and conferences. Data will be open access through the BiB, the Open Science Framework and the UK Data Service.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Estudos Transversais , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Material Particulado/análise , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Reino Unido
5.
Environ Sci Process Impacts ; 25(9): 1532-1548, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37609942

RESUMO

Domestic cooking is a source of indoor air pollutants, including volatile organic compounds (VOCs), which can impact on indoor air quality. However, the real-time VOC emissions from cooking are not well characterised, and similarly, the resulting secondary chemistry is poorly understood. Here, selected-ion flow-tube mass spectrometry (SIFT-MS) was used to monitor the real-time VOC emissions during the cooking of a scripted chicken and vegetable stir-fry meal, in a room scale, semi-realistic environment. The VOC emissions were dominated by alcohols (70% of total emission), but also contained a range of aldehydes (14%) and terpenes (5%), largely attributable to the heating of oil and the preparation and heating of spices, respectively. The direct cooking-related VOC emissions were then simulated using the Indoor Chemical Model in Python (INCHEM-Py), to investigate the resulting secondary chemistry. Modelling revealed that VOC concentrations were dominated by direct emissions, with only a small contribution from secondary products, though the secondary species were longer lived than the directly emitted species. Following cooking, hydroxyl radical concentrations reduced by 86%, while organic peroxy radical levels increased by over 700%, later forming secondary organic nitrates, peroxyacylnitrates (PANs) and formaldehyde. Monoterpene emissions were shown to drive the formation of secondary formaldehyde, albeit to produce relatively modest concentrations (average of 60 ppt). Sensitivity analysis of the simulation conditions revealed that increasing the outdoor concentrations of ozone and NOx species (2.9× and 9×, respectively) resulted in the greatest increase in secondary product formation indoors (≈400%, 200% and 600% increase in organic nitrates, PANs and formaldehyde production, respectively). Given the fact that climate change is likely to result in increased ozone concentrations in the future, and that increased window-opening in response to rising temperatures is also likely, higher concentrations of indoor oxidants are likely in homes in the future. This work, therefore, suggests that cooking could be a more important source of secondary pollutants indoors in the future.


Assuntos
Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Nitratos , Culinária , Formaldeído
6.
Sci Total Environ ; 900: 165744, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37487894

RESUMO

Source apportionment (SA) for indoor air pollution is challenging due to the multiplicity and high variability of indoor sources, the complex physical and chemical processes that act as primary sources, sinks and sources of precursors that lead to secondary formation, and the interconnection with the outdoor environment. While the major indoor sources have been recognized, there is still a need for understanding the contribution of indoor versus outdoor-generated pollutants penetrating indoors, and how SA is influenced by the complex processes that occur in indoor environments. This paper reviews our current understanding of SA, through reviewing information on the SA techniques used, the targeted pollutants that have been studied to date, and their source apportionment, along with limitations or knowledge gaps in this research field. The majority (78 %) of SA studies to date focused on PM chemical composition/size distribution, with fewer studies covering organic compounds such as ketones, carbonyls and aldehydes. Regarding the SA method used, the majority of studies have used Positive Matrix Factorization (31 %), Principal Component Analysis (26 %) and Chemical Mass Balance (7 %) receptor models. The indoor PM sources identified to date include building materials and furniture emissions, indoor combustion-related sources, cooking-related sources, resuspension, cleaning and consumer products emissions, secondary-generated pollutants indoors and other products and activity-related emissions. The outdoor environment contribution to the measured pollutant indoors varies considerably (<10 %- 90 %) among the studies. Future challenges for this research area include the need for optimization of indoor air quality monitoring and data selection as well as the incorporation of physical and chemical processes in indoor air into source apportionment methodology.

7.
Sci Total Environ ; 881: 163497, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37062317

RESUMO

Plastic products are ubiquitous in our homes, but we know very little about emissions from these products and their subsequent impact on indoor air quality. This is the first study to systematically determine temperature-dependent emissions of volatile organic compounds from commonly used plastic consumer products found in the home. The plastic types included high-density polyethylene (HDPE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS) and polyester rubber. Plastic samples were exposed to increasing temperatures (between 18 and 28 °C) in controlled environmental chambers, connected to a proton-transfer-reaction time-of-flight mass-spectrometer (PTR-ToF-MS), where real-time emissions were detected. Average emission rates were determined and used to initialise an indoor air chemistry model (INCHEM-Py) at the highest and lowest experimental temperatures, to explore the impact these product emissions have on the indoor air chemistry. The PS tubing plastic proved to be the highest emitting polymer per surface area. Almost all selected VOC emissions were found to have a linear relationship with temperature. Upon observing the impacts of primary VOC emissions from plastics in modelled simulations, the hydroxyl radical concentration decreased by an average of 1.6 and 10 % relative to the baseline (with no plastics included) at 18 °C and 28 °C respectively. On the other hand, formaldehyde concentrations increased by 29 and 31.6 % relative to the baseline conditions at 18 °C and 28 °C respectively. The presence of plastic products indoors, therefore, has the potential to impact the indoor air quality.

8.
Science ; 377(6610): 1045-1046, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36048941

RESUMO

A human-occupied indoor space shares many similarities with Earth and its atmosphere.


Assuntos
Poluição do Ar em Ambientes Fechados , Corpo Humano , Humanos
9.
Indoor Air ; 32(6): e13054, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35762241

RESUMO

The importance of photolysis as an initiator of air chemistry outdoors is widely recognized, but its role in chemical processing indoors is often ignored. This paper uses recent experimental data to modify a detailed chemical model, using it to investigate the impacts of glass type, artificial indoor lighting, cloudiness, time of year and latitude on indoor photolysis rates and hence indoor air chemistry. Switching from an LED to an uncovered fluorescent tube light increased predicted indoor hydroxyl radical concentrations by ~13%. However, moving from glass that transmitted outdoor light at wavelengths above 380 nm to one that transmitted sunlight above 315 nm led to an increase in predicted hydroxyl radicals of more than 400%. For our studied species, including ozone, nitrogen oxides, nitrous acid, formaldehyde, and hydroxyl radicals, the latter were most sensitive to changes in indoor photolysis rates. Concentrations of nitrogen dioxide and formaldehyde were largely invariant, with exchange with outdoors and internal deposition controlling their indoor concentrations. Modern lights such as LEDs, together with low transmission glasses, will likely reduce the effects of photolysis indoors and the production of potentially harmful species. Research is needed on the health effects of different indoor air mixtures to confirm this conclusion.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Formaldeído/análise , Radical Hidroxila/análise , Ácido Nitroso/análise , Fotólise
10.
Indoor Air ; 32(3): e13021, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35347794

RESUMO

Cleaning products contain numerous individual chemicals, which can be liberated on use. These species can react in air to form new chemical species, some of which are harmful to health. This paper uses a detailed chemical model for indoor air chemistry, to understand the chemical reactions that can occur following cleaning, assuming cleaning products with different proportions of limonene, α-pinene, and ß-pinene are used. The tests included the pure compounds, 50:50 mixtures and mixtures in proportion to the rates of reaction with ozone and the hydroxyl radical. For the 3 h following cleaning, pure α-pinene was most efficient at producing particles, pure limonene for nitrated organic material, and a 50:50 mixture of ß-pinene and limonene for formaldehyde, leading to enhancements of 1.1 µg/m3 , 400 ppt, and 1.8 ppb, respectively, compared to no cleaning. Cleaning in the afternoon enhanced concentrations of secondary pollutants for all the mixtures, owing to higher outdoor and hence indoor ozone compared to the morning. These enhancements in concentrations lasted several hours, despite the cleaning emissions only lasting for 10 min. Doubling the air exchange rate enhanced concentrations of formaldehyde and particulate matter by ~15% while reducing that of nitrated organic material by 13%. Changing product formulations has the potential to change the resulting indoor air quality and consequently, impacts on health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Formaldeído , Limoneno , Óxidos de Nitrogênio , Compostos Orgânicos/química , Ozônio/análise
11.
Commun Chem ; 4(1): 110, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36697551

RESUMO

Historically air constituents have been assumed to be well mixed in indoor environments, with single point measurements and box modeling representing a room or a house. Here we demonstrate that this fundamental assumption needs to be revisited through advanced model simulations and extensive measurements of bleach cleaning. We show that inorganic chlorinated products, such as hypochlorous acid and chloramines generated via multiphase reactions, exhibit spatial and vertical concentration gradients in a room, with short-lived ⋅OH radicals confined to sunlit zones, close to windows. Spatial and temporal scales of indoor constituents are modulated by rates of chemical reactions, surface interactions and building ventilation, providing critical insights for better assessments of human exposure to hazardous pollutants, as well as the transport of indoor chemicals outdoors.

12.
Environ Sci Technol ; 54(24): 15643-15651, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33258369

RESUMO

Activities such as household cleaning can greatly alter the composition of air in indoor environments. We continuously monitored hydrogen peroxide (H2O2) from household non-bleach surface cleaning in a chamber designed to simulate a residential room. Mixing ratios of up to 610 ppbv gaseous H2O2 were observed following cleaning, orders of magnitude higher than background levels (sub-ppbv). Gaseous H2O2 levels decreased rapidly and irreversibly, with removal rate constants (kH2O2) 17-73 times larger than air change rate (ACR). Increasing the surface-area-to-volume ratio within the room caused peak H2O2 mixing ratios to decrease and kH2O2 to increase, suggesting that surface uptake dominated H2O2 loss. Volatile organic compound (VOC) levels increased rapidly after cleaning and then decreased with removal rate constants 1.2-7.2 times larger than ACR, indicating loss due to surface partitioning and/or chemical reactions. We predicted photochemical radical production rates and steady-state concentrations in the simulated room using a detailed chemical model for indoor air (the INDCM). Model results suggest that, following cleaning, H2O2 photolysis increased OH concentrations by 10-40% to 9.7 × 105 molec cm-3 and hydroperoxy radical (HO2) concentrations by 50-70% to 2.3 × 107 molec cm-3 depending on the cleaning method and lighting conditions.


Assuntos
Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluição do Ar em Ambientes Fechados/análise , Gases , Peróxido de Hidrogênio , Modelos Químicos , Compostos Orgânicos Voláteis/análise
13.
Chem ; 6(12): 3203-3218, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-32984643

RESUMO

Chemical reactions on indoor surfaces play an important role in air quality in indoor environments, where humans spend 90% of their time. We focus on the challenges of understanding the complex chemistry that takes place on indoor surfaces and identify crucial steps necessary to gain a molecular-level understanding of environmental indoor surface chemistry: (1) elucidate key surface reaction mechanisms and kinetics important to indoor air chemistry, (2) define a range of relevant and representative surfaces to probe, and (3) define the drivers of surface reactivity, particularly with respect to the surface composition, light, and temperature. Within the drivers of surface composition are the roles of adsorbed/absorbed water associated with indoor surfaces and the prevalence, inhomogeneity, and properties of secondary organic films that can impact surface reactivity. By combining laboratory studies, field measurements, and modeling we can gain insights into the molecular processes necessary to further our understanding of the indoor environment.

14.
Indoor Air ; 30(6): 1241-1255, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32485006

RESUMO

Effective cleaning techniques are essential for the sterilization of rooms in hospitals and industry. No-touch devices (NTDs) that use fumigants such as hydrogen peroxide (H2 O2 ), formaldehyde (HCHO), ozone (O3 ), and chlorine dioxide (OClO) are a recent innovation. This paper reports a previously unconsidered potential consequence of such cleaning technologies: the photochemical formation of high concentrations of hydroxyl radicals (OH), hydroperoxy radicals (HO2 ), organic peroxy radicals (RO2 ), and chlorine radicals (Cl) which can form harmful reaction products when exposed to chemicals commonly found in indoor air. This risk was evaluated by calculating radical production rates and concentrations based on measured indoor photon fluxes and typical fumigant concentrations during and after cleaning events. Sunlight and fluorescent tubes without covers initiated photolysis of all fumigants, and plastic-covered fluorescent tubes initiated photolysis of only some fumigants. Radical formation was often dominated by photolysis of fumigants during and after decontamination processes. Radical concentrations were predicted to be orders of magnitude greater than background levels during and immediately following cleaning events with each fumigant under one or more illumination condition. Maximum predicted radical concentrations (1.3 × 107 molecule cm-3 OH, 2.4 ppb HO2 , 6.8 ppb RO2 and 2.2 × 108 molecule cm-3 Cl) were much higher than baseline concentrations. Maximum OH concentrations occurred with O3 photolysis, HO2 with HCHO photolysis, and RO2 and Cl with OClO photolysis. Elevated concentrations may persist for hours after NTD use, depending on the air change rate and air composition. Products from reactions involving radicals could significantly decrease air quality when disinfectants are used, leading to adverse health effects for occupants.


Assuntos
Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Hospitais , Fotólise , Cloro , Formaldeído , Processos Fotoquímicos , Luz Solar
16.
Indoor Air ; 30(3): 459-472, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32034823

RESUMO

Volatile organic compounds (VOCs) emitted from personal care products (PCPs) can affect indoor air quality and outdoor air quality when ventilated. In this paper, we determine a set of simplified VOC species profiles and emission rates for a range of non-aerosol PCPs. These have been constructed from individual vapor analysis from 36 products available in the UK, using equilibrium headspace analysis with selected-ion flow-tube mass spectrometry (SIFT-MS). A simplified speciation profile is created based on the observations, comprising four alcohols, two cyclic volatile siloxanes, and monoterpenes (grouped as limonene). Estimates are made for individual unit-of-activity VOC emissions for dose-usage of shampoos, shower gel, conditioner, liquid foundation, and moisturizer. We use these values as inputs to the INdoor air Detailed Chemical Model (INDCM) and compare results against real-world case-study experimental data. Activity-based emissions are then scaled based on plausible usage patterns to estimate the potential scale of annual per-person emissions for each product type (eg, 2 g limonene person-1  yr-1 from shower gels). Annual emissions from non-aerosol PCPs for the UK are then calculated (decamethylcyclopentasiloxane 0.25 ktonne yr-1 and limonene 0.15 ktonne yr-1 ) and these compared with the UK National Atmospheric Emissions Inventory estimates for non-aerosol cosmetics and toiletries.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Cosméticos/análise , Monitoramento Ambiental , Compostos Orgânicos Voláteis/análise , Produtos Domésticos
17.
Environ Sci Process Impacts ; 21(8): 1313-1322, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31140998

RESUMO

Indoor air is subject to emissions of chemicals from numerous sources. Many of these emissions contain volatile organic compounds (VOCs), which react to form a wide range of secondary products, some with adverse health effects. However, at present we lack a robust, standardised approach to rank the potential for different VOCs to cause harm, which prevents effective action to improve indoor air quality and reduce impacts on human health. This paper uses a detailed chemical model to quantify the impact of 63 VOCs on indoor air quality. We define a novel method for ranking the VOCs in terms of potentially harmful product formation through a new metric, the Secondary Product Creation Potential (SPCP). We established SPCPs for a range of ventilation rates, different proportions of transmitted outdoor light, as well as for varying outdoor concentrations of ozone and nitrogen oxides. The species having the largest SPCPs are the alkenes, terpenes and aromatic VOCs. trans-2-Butene has the largest individual SPCP owing to the ratio of its rate coefficient for reaction with the hydroxy radical relative to ozone. Increasing the proportion of outdoor transmitted light increased most SPCPs markedly. This is because oxidant levels increased under these conditions and promoted more chemical processing, suggesting that there may be more harmful products closer to a window than further from the attenuated outdoor light. The SPCP is the first metric for assessing the impact of different VOCs on human health and will be an essential tool for guiding the composition of products commonly used indoors.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Compostos Orgânicos Voláteis/análise , Humanos , Óxidos de Nitrogênio/análise , Ozônio/análise , Medição de Risco
18.
Environ Sci Process Impacts ; 21(8): 1240-1254, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31070639

RESUMO

We report on the development of a modelling consortium for chemistry in indoor environments that connects models over a range of spatial and temporal scales, from molecular to room scales and from sub-nanosecond to days, respectively. Our modeling approaches include molecular dynamics (MD) simulations, kinetic process modeling, gas-phase chemistry modeling, organic aerosol modeling, and computational fluid dynamics (CFD) simulations. These models are applied to investigate ozone reactions with skin and clothing, oxidation of volatile organic compounds and formation of secondary organic aerosols, and mass transport and partitioning of indoor species to surfaces. MD simulations provide molecular pictures of limonene adsorption on SiO2 and ozone interactions with the skin lipid squalene, providing kinetic parameters such as surface accommodation coefficient, desorption lifetime, and bulk diffusivity. These parameters then constrain kinetic process models, which resolve mass transport and chemical reactions in gas and condensed phases for analysis of experimental data. A detailed indoor chemical box model is applied to simulate α-pinene ozonolysis with improved representation of gas-particle partitioning. Application of 2D-volatility basis set reveals that OH-induced aging sometimes drives increases in indoor organic aerosol concentrations, due to organic mass functionalization and enhanced partitioning. CFD simulations show that concentrations of ozone and primary product change near the human surface rapidly, indicating non-uniform spatial distributions from the occupant surface to ambient air, while secondary ozone product is relatively well-mixed throughout the room. This development establishes a framework to integrate different modeling tools and experimental measurements, opening up an avenue for development of comprehensive and integrated models with representations of various chemistry in indoor environments.


Assuntos
Poluentes Atmosféricos/química , Poluição do Ar em Ambientes Fechados/análise , Modelos Teóricos , Ozônio/química , Compostos Orgânicos Voláteis/química , Aerossóis , Poluentes Atmosféricos/análise , Humanos , Cinética , Oxirredução , Ozônio/análise , Pele/química , Análise Espaço-Temporal , Propriedades de Superfície , Têxteis/análise , Compostos Orgânicos Voláteis/análise
19.
Indoor Air ; 29(3): 369-379, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30663813

RESUMO

People are an important source of pollution indoors, through activities such as cleaning, and also from "natural" emissions from breath and skin. This paper investigates natural emissions in high-occupancy environments. Model simulations are performed for a school classroom during a typical summer in a polluted urban area. The results show that classroom occupants have a significant impact on indoor ozone, which increases from ~9 to ~20 ppb when the pupils leave for lunch and decreases to ~14 ppb when they return. The concentrations of 4-OPA, formic acid, and acetic acid formed as oxidation products following skin emissions attained maximum concentrations of 0.8, 0.5, and 0.1 ppb, respectively, when pupils were present, increasing from near-zero concentrations in their absence. For acetone, methanol, and ethanol from breath emissions, maximum concentrations were ~22.3, 6.6, and 21.5 ppb, respectively, compared to 7.4, 2.1, and 16.9 ppb in their absence. A rate of production analysis showed that occupancy reduced oxidant concentrations, while enhancing formation of nitrated organic compounds, owing to the chemistry that follows from increased aldehyde production. Occupancy also changes the peroxy radical composition, with those formed through isoprene oxidation becoming relatively more important, which also has consequences for subsequent oxidant concentrations.


Assuntos
Poluentes Atmosféricos/química , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Respiração , Pele/química , Ácido Acético/análise , Formiatos/análise , Humanos , Ozônio/análise , Instituições Acadêmicas
20.
J Chem Educ ; 96(12): 2959-2967, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32051645

RESUMO

Increasing demand for chemicals worldwide, depleting resources, consumer pressure, stricter legislation, and the rising cost of waste disposal are placing increasing pressure on chemical and related industries. For any organization to survive in the current arena of growing climate change laws and regulations, and increasing public influence, the issue of sustainability must be fundamental to the way it operates. A sustainable manufacturing approach will enable economic growth to be combined with environmental and social sustainability and will be realized via collaboration between a multidisciplinary community including chemists, biologists, engineers, environmental scientists, economists, experts in management, and policy makers. Hence, employees with new skills, knowledge, and experience are essential. To realize this approach, the design and development of a series of workshops encompassing systems thinking are presented here. After close consultation with industry, an annual program of interactive workshops has been designed for graduate students to go beyond examining the "greening" of chemical reactions, processes, and products, and instead embed a systems thinking approach to learning. The workshops provide a valuable insight into the issues surrounding sustainable manufacturing covering change management, commercialization, environmental impact, circular economy, legislation, and bioresources incorporating the conversion of waste into valuable products. The multidisciplinary course content incorporates industrial case studies, providing access to real business issues, and is delivered by experts from academic departments across campus and industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...